<u>42 1871</u> Код продукции

ДАТЧИК - РЕЛЕ ТЕМПЕРАТУРЫ ДРТ-1-220

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 5Д2.821.020 РЭ

5Д2.821.020 РЭ

Настоящее руководство по эксплуатации (в дальнейшем – РЭ) распространяется на датчик-реле температуры ДРТ-1-220 и предназначено для изучения принципа действия, конструкции изделия, обеспечения правильной и безопасной его эксплуатации в течение всего срока службы.

Уровень подготовки обслуживающего персонала – слесарь КИП и A не ниже третьего разряда.

РЭ состоит из введения и следующих разделов:

1	Назначение	3
2	Технические данные	4
3	Состав изделия	7
4	Устройство и работа	8
5	Указание мер безопасности.	10
6	Монтаж и подготовка к работе.	11
7	Маркирование	16
8	Тара и упаковка	17
9	Возможные неисправности и способы их устранения	18
10	Техническое обслуживание	18
11	Хранение и транспортирование	19

П р и м е ч а н и е – Предприятие-изготовитель оставляет за собой право вносить незначительные изменения в конструкции датчиков-реле, не ухудшающие качества их работы, не отражая их в описании.

1 НАЗНАЧЕНИЕ

1.1 Датчик-реле температуры ДРТ-1-220 (далее по тексту – датчик) предназначен для контроля температуры технологических сред и узлов оборудования в химической, нефтехимической, пищевой, медицинской и других отраслях промышленности.

Датчик может быть использован в системах контроля, сигнализации, блокировки насосов, компрессоров и другого технологического оборудования.

- 1.2 По метрологическим свойствам датчик относится к изделиям, не являющимся средством измерения, но имеющий точностные характеристики по ГОСТ 12997-84.
 - 1.3 Вид климатического исполнения УХЛ1.1 по ГОСТ 15150-69.
 - 1.4 Датчик относится к группе исполнения Д2 по ГОСТ 12997-84.
 - 1.5 Условия эксплуатации датчика:
 - температура окружающего воздуха от минус 55 до плюс 85 °C;
 - атмосферное давление от 84 до107 кПа (от 630 до 800 мм рт.ст.);
- относительная влажность окружающего воздуха до 100% при температуре воздуха 25 °C;
- вибрационные воздействия с частотой от 10 до 100 Гц при ускорении до 20 м/сек² и частотой от 100 до 300 Гц при ускорении до 50 м/сек²;
 - ударные сотрясения с ускорением до 100 м/сек²;
- содержание агрессивных примесей в окружающем воздухе должно быть в пределах санитарных норм.
- 1.6 По способу защиты человека от поражения электрическим током датчик соответствует классу II по ГОСТ 12.2.007.0-75.
- 1.7 Датчик не создает при работе опасности для обслуживающего персонала и не является источником агрессивных и токсичных выделений.
- 1.8 Датчик сохраняет свои характеристики при воздействии внешних постоянных магнитных полей с напряженностью до 40 А/м по ГОСТ 12997-84.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

- 2.1 Датчик настроен на два значения температурных уставок : значение верхней уставки датчика tв и значение нижней уставки датчика tн, кратных 1 °C, из диапазона контролируемых температур от минус 55 до плюс 125 °C.
- 2.2 При превышении температурой контролируемой среды значения верхней уставки tв происходит срабатывание датчика, включается электрическое реле с переключающимся контактом.
- 2.3 Предел основной абсолютной погрешности срабатывания датчика, измеренный в нормальных условиях ±1 °C.

Примечания:

- 1) Основная абсолютная погрешность срабатывания датчика определяется как разность между значением температуры, вызвавшим его срабатывание, и заданным значением верхней температурной уставки tв.
- 2) Номинальным значением уставки tв считают температуру, при которой происходит включение электрического реле.
- 2.4 Выключение датчика происходит при достижении температурой контролируемой среды значения нижней уставки th, при котором датчик возвращается в исходное состояние выключается электрическое реле.
- 2.5 Температурные уставки датчика tв и tн задаются с помощью блока контроля температуры БКТ-1.
 - 2.6 Параметры контролируемой среды:
 - 1) температура от минус 55 до плюс 125 °C;
 - 2) максимальное давление рабочей среды 60 кгс/см².
- 2.7 Агрессивность среды не должна превышать химическую стойкость стали 12X18H10T ГОСТ 5632-72.
 - 2.9 Габаритные и установочные размеры датчика показаны на рисунке 2.1.
 - 2.9 Масса датчика не превышает 0,5 кг.

2.10 Параметры цепей питания датчика

- 2.10.1 Питание датчика осуществляется от сети переменного тока напряжением 220 В с допускаемым отклонением от минус 15 до плюс 10 %, частотой (50±0,4) Гц.
 - 2.10.2 Электрическая мощность, потребляемая датчиком, не более 5,0 Вт.

- 2.10.3 Замыкающий и размыкающий контакты реле коммутируют внешние электрические цепи переменного тока, напряжением 220 В, силой тока 10 А.
- 2.10.4 Изоляция электрических цепей датчика относительно корпуса при нормальных климатических условиях выдерживает в течение 1 мин испытательное напряжение 1,5 кВ практически синусоидальной формы, частотой от 45 до 65 Гц.
- 2.10.5 Электрическое сопротивление изоляции электрических цепей датчика относительно корпуса при нормальных климатических условиях не менее 20 МОм.
- 2.11 Датчик выдерживает воздействие перегрузки температурой контролируемой среды не более 150 °C в течение 15 минут.
 - 2.12 Датчик выдерживают воздействие следующих климатических факторов:
- 1) температуры окружающей среды от минус 55°C до плюс 85°C при относительной влажности до 80%;
- 2) относительной влажности окружающего воздуха до 100% при температуре воздуха 25 °C;
 - 3) атмосферного давления от 84 до 107 кПа (от 630 до 800 мм рт.ст.).
- 2.13 Датчик имеет степень защиты внутренних элементов от проникновения внутрь пыли и воды IP65 по ГОСТ 14254.

2.14 Требования надежности

- 2.14.1 Датчик является восстанавливаемым, неремонтируемым, обслуживаемым изделием, контролируемым перед применением.
- 2.14.2 Критерием отказа датчика считают несоответствие требованиям п.п.2.2÷2.4.
- 2.14.3 Критерием предельного состояния датчика является состояние, при котором невозможно восстановление работоспособного состояния датчика на месте эксплуатации по 5Д2.821.020 РЭ.
 - 2.14.4 Средняя наработка до отказа не менее 50000 ч.
 - 2.14.5 Средний полный ресурс срабатывания датчика не менее 10⁶ циклов.
 - 2.14.6 Назначенный срок службы 10 лет.

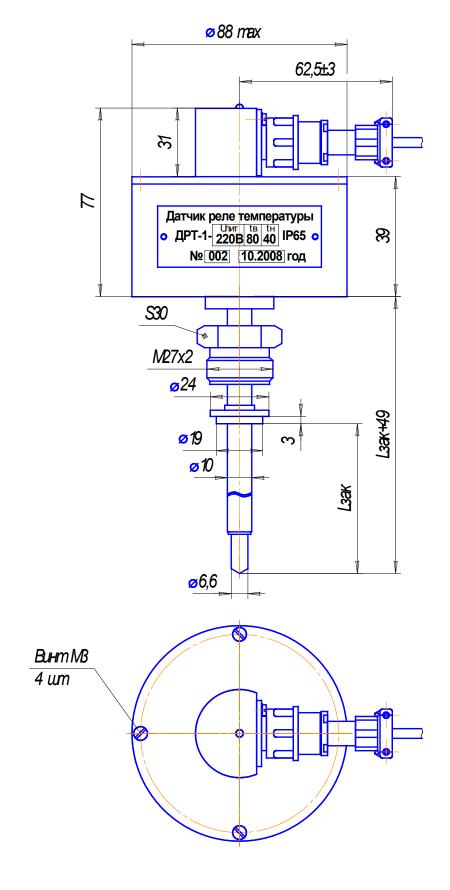


Рисунок 2.1 – Габаритные и установочные размеры датчика ДРТ-1-220

• • •

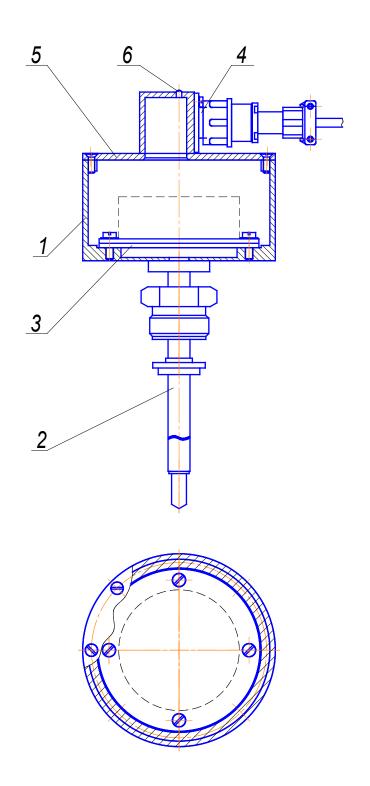
3 СОСТАВ ИЗДЕЛИЯ

3.1 В состав изделия входят:	
1) датчик-реле температуры ДРТ-1-220 5Д2.821.020, шт.	1
2) комплект монтажных частей:	
- розетка разъема 2РМТ22КПН10Г1В1 с кожухом	1
3) документация:	
- руководство по эксплуатации 5Д2.821.020 РЭ, экз.	1
- паспорт 5Д2.821.020 ПС, экз.	1

П р и м е ч а н и е – Допускается прилагать 1 экз. РЭ на партию до 10 шт. датчиков, поставляемых в один адрес.

4 УСТРОЙСТВО И РАБОТА

4.1 Принцип действия датчика ДРТ-1-220 заключается в сравнении температуры контролируемой среды с заданными температурными уставками.


При превышении температурой контролируемой среды значения верхней уставки tв датчик включает электрическое реле с переключающимся контактом. Замыкающий и размыкающий контакты реле коммутируют внешние электрические цепи постоянного тока.

Выключение электрического реле датчика происходит при достижении температурой контролируемой среды значения нижней уставки th.

4.2 Конструкция датчика

Конструкция датчика представлена на рисунке 4.1.

- 4.2.1 Датчик состоит из корпуса 1, на котором закреплен термобаллон 2. Внутри корпуса установлена печатная плата 3 с радиоэлементами схемы и электромагнитным реле.
- 4.2.2 Корпус закрывается крышкой 5. На крышке установлены разъем 4 (вилка 2РМ22КПН10Ш1В1) для подключения цепей питания, нагрузки или блока контроля температуры БКТ-1 и светодиод 6, сигнализирующий о наличии напряжения питания и работе внутреннего преобразователя датчика. Блок БКТ-1 используется для задания значений уставок и контроля температуры.
- 4.2.3 В нижней части термобаллона находится чувствительный температурный элемент, в котором заданы температурные уставки tв и tн.

1 – корпус; 2 – термобаллон; 3 – плата;

4 – разъем; 5 – крышка; 6 - светодиод.

Рисунок 4.1 – Конструкция датчика ДРТ-1-220

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 5.1 К работам по монтажу, обслуживанию и эксплуатации датчика допускаются лица, изучившие устройство датчика и обученные правилам по технике безопасности, относящимся к электрическим изделиям по ГОСТ 12.2.007.0-75 и приборам, работающим под давлением.
- 5.2 Запрещается отключать датчик от цепей питания и нагрузки при наличии напряжения питания.
- 5.3 Техническое обслуживание проводить при отключенных цепях питания и нагрузки датчика.
- 5.4 При проведении испытаний по проверке электрической прочности изоляции и при измерении ее сопротивления следует руководствоваться ГОСТ 12997-84.

ВНИМАНИЕ!!!

<u>Задание уставок и контроль температуры с помощью блока БКТ-1 проводить при отключенных цепях питания и нагрузки.</u>

6 МОНТАЖ И ПОДГОТОВКА К РАБОТЕ

- 6.1 Перед монтажом датчика необходимо:
- 1) извлечь датчик и комплект монтажных частей из упаковки;
- 2) проверить работоспособность датчика по п.6.2
- 6.2 Проверка работоспособности датчика.

В лабораторных условиях собирают схему в соответствии с рисунком 6.1.

На выходе источника питания устанавливают напряжение (220±1) В с допускаемым отклонением от минус 15 до плюс 10 %.

Погружают термобаллон датчика в термостат, в котором устанавливают температуру, равную значению верхней уставки tв минус 3 °C (tв -3 °C) – должна гореть лампа HL2 в цепи нормально замкнутого контакта 3.

Медленно, со скоростью не более 0,2 °C в минуту, повышают температуру в термостате до момента срабатывания датчика – должна загореться лампа HL1 в цепи нормально разомкнутого контакта 4.

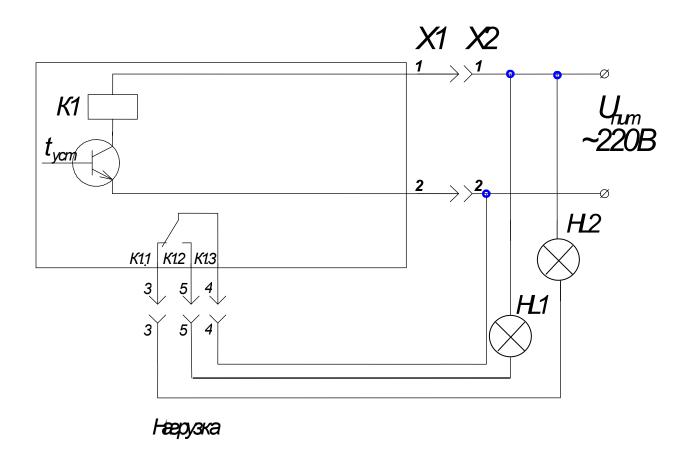
В этот момент регистрируют температуру воды в термостате по контрольному термометру.

Полученное значение температуры является температурой срабатывания датчика.

Определяют абсолютную погрешность срабатывания датчика как разность между температурой срабатывания и значением верхней уставки tв, указанным в паспорте на датчик.

Если полученная при проверке погрешность соответствует погрешности, указанной в паспорте, датчик готов к работе.

Примечание — У датчиков с короткой длиной погружной части термобаллона может возникнуть дополнительная погрешность из-за большой теплопередачи корпуса. Для ее компенсации рекомендуется уменьшать значение температурной уставки на $1\,^{\circ}$ C.


Пример: При температуре контролируемой среды 70 ⁰C задавать значение температурной уставки tв, равное 69 ⁰C или 68 ⁰C.

Медленно, со скоростью не более 0,2 °C в минуту, понижают температуру в термостате до момента выключения датчика – должна загореться лампа HL2 в цепи нормально разомкнутого контакта 3.

5Д2.821.020 РЭ

В этот момент регистрируют температуру воды в термостате по контрольному термометру.

Полученное значение температуры является температурой выключения датчика, соответствующей значению нижней уставки th.

U_{пит} - источник питания переменного тока (220 B);

HL1, HL2 – лампы накаливания 40Вт 220 В (2шт);

X1 – вилка 2PM22КПН10Ш1В1;

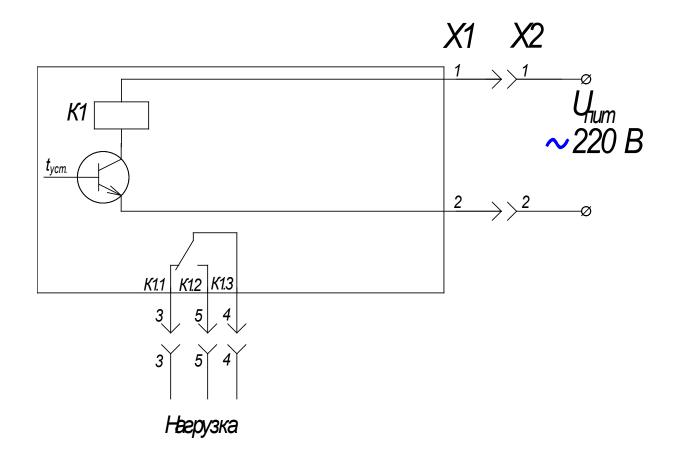

Х2 – розетка 2РМТ22КПН10Г1В1

Рисунок 6.1 – Схема проверки работоспособности датчика ДРТ-1-220

6.3 Монтаж датчика необходимо производить в соответствии с рисунком 2.1.

- 6.4 Электромонтаж датчика производится кабелем в соответствии со схемой подключения, приведенной на рисунке 6.2.
- 6.5 Задание уставок и контроль температуры производится с помощью блока контроля температуры БКТ-1. Схема подключения блока БКТ-1 к датчику ДРТ-1-220 приведена на рисунке 6.3.
- 6.6 Время выдержки датчика после транспортирования перед включением в эксплуатацию при температуре эксплуатации должно быть:
 - в летнее время не менее 3 ч;
 - в зимнее время не менее 6 ч.
- 6.7 При эксплуатации датчик должен подвергаться ежемесячному внешнему осмотру, при котором необходимо проверять:
- целостность внешней оболочки датчика, отсутствие вмятин, коррозии и других повреждений;
 - наличие всех крепежных деталей и элементов.

Эксплуатировать датчик ДРТ-1-220 с поврежденными деталями и другими неисправностями категорически запрещается.

U_{пит}» источника питания переменного тока (220 В);

X1 – вилка 2PM22КПН10Ш1В1;

X2 – розетка 2PMT22КПН10Г1В1.

Концы кабеля распаять на контакты розетки 2РМТ22КПН10Г1В1 из комплекта монтажных частей.

Рисунок 6.2 – Схема электрическая подключения датчика ДРТ-1-220

X1 – вилка 2PM22КПН10Ш1В1 датчика ДРТ-1-220;

Х2 – розетка ДВ-9F;

БКТ-1 – блок контроля температуры

Рисунок 6.3 – Схема электрическая подключения блока БКТ-1 к датчику ДРТ-1-220 для задания уставок и контроля температуры

ВНИМАНИЕ!!!

<u>Задание уставок и контроль температуры с помощью блока БКТ-1 проводить при отключенных цепях питания и нагрузки.</u>

7 МАРКИРОВКА

- 7.1 Маркировка датчика соответствует ГОСТ 26828-86.
- 7.2 Маркировка датчика нанесена на части, доступные для обзора.
- 7.3 Содержание маркировки:
 - товарный знак предприятия-изготовителя;
 - условное обозначение датчика-реле температуры ДРТ-1-220;
 - tв температура верхней уставки;
 - tн температура нижней уставки;
 - маркировка степени защиты IP65;
 - заводской номер изделия;
 - год изготовления.
- 7.4 Способ выполнения маркировки гравирование или металлофото.
- 7.5 Маркировка является устойчивой в течение всего срока службы датчиков, механически прочной, нестираемой и несмываемой.
- 7.6 Маркировка транспортной тары выполнена в соответствии с требованиями ГОСТ 14192-96.

На ярлыках нанесены манипуляционные знаки: "Хрупкое. Осторожно", "Беречь от влаги", "Верх"; основные, дополнительные и информационные надписи, а также надписи: "ДРТ-1-220" и "Законсервировано до _____ года".

Качество транспортной маркировки обеспечивает ее сохранность в условиях хранения 5 по ГОСТ 15150-69.

8 ТАРА И УПАКОВКА

8.1 Упаковка производится в соответствии с требованиями ГОСТ 23170-78. Категория упаковки КУ-2 по ГОСТ 23170-78.

Вид внутренней упаковки ВУ-3 по ГОСТ 9.014-78.

8.2 Временная противокоррозионная защита – по группе II ГОСТ 9.014-78.

Датчик и комплект монтажных частей, обернутые каждый бумагой, вложены в пакет из полиэтиленовой пленки по ГОСТ 10354-82 толщиной не менее 0,15 мм.

Срок защиты без переконсервации – 3 года.

- 8.3 Эксплуатационно-техническая и товаросопроводительная документация отдельно вложена в полиэтиленовые пакеты. Открытые стороны пакетов заварены.
- 8.4 Упакованные датчики и документация уложены в ящики типа II-1 по ГОСТ 5959-80 из древесноволокнистой плиты.

Количество датчиков, упакованных в один транспортный ящик, определяется объемами поставок.

9 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

9.1 Возможные неисправности и способы их устранения приведены в таблице 9.1. Таблица 9.1

Наименование неисправно- сти, внешнее проявление и дополнительные признаки	Вероятная причина	Способ устранения		
В диапазоне контролируе- мых температур отсутствует выходной сигнал.	Наличие влаги или загрязнения в месте стыковки разъемов Отсутствие контакта в месте стыковки разъемов	Устранить наличие влаги или загрязнения Устранить отсутствие контакта путем затягивания гайки розетки разъема		

10 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

10.1 Техническое обслуживание датчиков производить в соответствии с таблицей 10.1

Таблица 10.1

Периодичность	Операции
Ежемесячно	Визуальный контроль отсутствия обрыва соединительных проводов.
Ежеквартально	Проверка работоспособности по методике п.6.2.

11 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

11.1 Хранение

- 11.1.1 Датчики в упаковке хранятся в условиях 3 по ГОСТ 15150-69.
- 11.1.2 Срок хранения датчиков без обслуживания 3 года.

11.2 Транспортирование

- 11.2.1 Датчики в упаковке предприятия-изготовителя могут транспортироваться в крытых железнодорожных вагонах, в герметизированных отсеках самолетов и контейнерах автомобильного транспорта без ограничения скорости по правилам перевозок грузов соответствующих транспортных министерств.
- 11.2.2 Условия транспортирования соответствуют условиям хранения 5 по ГОСТ 15150-69.

<u>42 1871</u> Код продукции УТВЕРЖДАЮ
Технический директор
ОАО "Автоматика"
В.П. Димитренко
2008 г.

ДАТЧИК РЕЛЕ ТЕМПЕРАТУРЫ ДРТ-1-220

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 5Д2.821.020 РЭ

5Д2.821.020 РЭ

ВНИМАНИЕ!

В содержании указаны страницы документа, отправляемого с изделием.

Гл. метролог

В.Н. Казилин

Изм.	Лист	№ докум.	Подпись	Дата	5Д2.821.020 РЭ				
Разработал		Мочалкина			Датчик-реле температуры	Литер	а	Лист	Листов
Проверил		Лихарев			ДРТ-1-220	Α		2	22
Н. контр.		Зауханов			Руководство по эксплуатации				
Утвер	дил	Эйхгольц							

ЗАКАЗАТЬ